在边缘计算中,必须根据用户移动性迁移用户的服务配置文件。已经提出了强化学习(RL)框架。然而,这些框架并不考虑偶尔的服务器故障,尽管很少会阻止Edge Computing用户的延迟敏感应用程序(例如自动驾驶和实时障碍物检测)的平稳和安全功能,因为用户的计算作业不再是完全的。由于这些故障的发生率很低,因此,RL算法本质上很难为数据驱动的算法学习针对典型事件和罕见事件方案的最佳服务迁移解决方案。因此,我们引入了罕见的事件自适应弹性框架火,该框架将重要性采样集成到加强学习中以放置备份服务。我们以与其对价值函数的贡献成正比的稀有事件进行采样,以学习最佳政策。我们的框架平衡了服务迁移和迁移成本之间的迁移权衡,与失败的成本以及备份放置和移民的成本。我们提出了一种基于重要性抽样的Q-学习算法,并证明其界限和收敛到最佳性。随后,我们提出了新的资格轨迹,我们的算法的线性函数近似和深Q学习版本,以确保其扩展到现实世界情景。我们扩展框架,以适应具有不同风险承受失败的用户。最后,我们使用痕量驱动的实验表明我们的算法在发生故障时会降低成本。
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
本报告介绍了第七次机器翻译会议(WMT22)的通用机器翻译任务的自动评估。它总共评估了21个翻译方向的185个系统,包括高资源至低资源语言对以及与遥远语言密切相关的系统。这种大规模的自动评估突出了最新机器翻译系统的一些当前限制。它还显示了自动指标,即CHRF,BLEU和COMET,如何在解释性和准确性方面进行补充以减轻自己的限制。
translated by 谷歌翻译
作为对隐喻分析的贡献,我们介绍了一项基于统计的基于数据的研究,并对长期存在的猜想和对隐喻系统特征的有史以来的经验探索进行了经验分析。相反,这也使隐喻理论可作为含义出现的基础,可以定量探索并集成到NLP的框架中。
translated by 谷歌翻译
我们建议一个基于深入强化学习的经理工作框架,以解决旅行推销员问题(TSP)的艰难而又非平凡的变体,\ ie〜有时间窗口和拒绝(MTSPTWR)的多车辆TSP(MTSPTWR),在此之前无法服务的客户截止日期将受到拒绝。特别是,在拟议的框架中,经理代理人通过基于图形同构网络(GIN)的策略网络将客户分配给每辆车,从而将MTSPTWR分为子路由任务。工人代理人通过根据每辆车的旅行长度和拒绝率来最大程度地降低成本来解决子路由任务,然后将其最多的最大值送回经理代理以学习更好的任务。实验结果表明,所提出的框架在更高的解决方案质量和较短的计算时间方面优于强基础。更重要的是,训练有素的代理商还取得了竞争性能,以解决看不见的较大实例。
translated by 谷歌翻译
本文重点介绍了重叠的语音和性别检测,以研究法国视听媒体中男女之间的互动(性别平等监测项目)。在这种应用程序上下文中,我们需要根据说话者的性别自动划分语音信号,并确定至少有两个说话者同时讲话。我们建议使用WAVLM模型,该模型具有在大量语音数据上进行预训练的优点,以构建重叠的语音检测(OSD)和性别检测(GD)系统。在这项研究中,我们使用两个不同的语料库。 Dihard III语料库非常适合OSD任务,但缺乏性别信息。盟友语料库符合项目申请上下文。我们最好的OSD系统是具有WAVLM预训练功能作为输入的时间卷积网络(TCN),该功能达到了Dihard上最先进的F1得分性能。神经GD在法国广播新闻盟友数据的性别平衡子集上接受了WAVLM输入的培训,并获得了97.9%的准确性。这项工作为人类科学研究人员开辟了有关法国媒体中男女表示差异的新观点。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
图神经网络(GNN)已成为与图形和类似拓扑数据结构有关的无数任务的骨干。尽管已经在与节点和图形分类/回归任务有关的域中建立了许多作品,但它们主要处理单个任务。在图形上的持续学习在很大程度上没有探索,现有的图形持续学习方法仅限于任务的学习方案。本文提出了一个持续学习策略,该策略结合了基于架构和基于内存的方法。结构学习策略是由强化学习驱动的,在该学习中,对控制器网络进行了这种方式,以确定观察到新任务时从基本网络中添加/修剪的最佳节点,从而确保足够的网络能力。参数学习策略的基础是黑暗体验重播方法的概念,以应对灾难性的遗忘问题。我们的方法在任务收入学习和课堂学习设置中都通过几个图的连续学习基准问题进行了数值验证。与最近发表的作品相比,我们的方法在这两种设置中都表明了性能的提高。可以在\ url {https://github.com/codexhammer/gcl}上找到实现代码。
translated by 谷歌翻译